Package: smile 1.0.6
Lucas da Cunha Godoy
smile: Spatial Misalignment: Interpolation, Linkage, and Estimation
Provides functions to estimate, predict and interpolate areal data. For estimation and prediction we assume areal data is an average of an underlying continuous spatial process as in Moraga et al. (2017) <doi:10.1016/j.spasta.2017.04.006>, Johnson et al. (2020) <doi:10.1186/s12942-020-00200-w>, and Wilson and Wakefield (2020) <doi:10.1093/biostatistics/kxy041>. The interpolation methodology is (mostly) based on Goodchild and Lam (1980, ISSN:01652273).
Authors:
smile_1.0.6.tar.gz
smile_1.0.6.zip(r-4.5)smile_1.0.6.zip(r-4.4)smile_1.0.6.zip(r-4.3)
smile_1.0.6.tgz(r-4.4-x86_64)smile_1.0.6.tgz(r-4.4-arm64)smile_1.0.6.tgz(r-4.3-x86_64)smile_1.0.6.tgz(r-4.3-arm64)
smile_1.0.6.tar.gz(r-4.5-noble)smile_1.0.6.tar.gz(r-4.4-noble)
smile_1.0.6.tgz(r-4.4-emscripten)smile_1.0.6.tgz(r-4.3-emscripten)
smile.pdf |smile.html✨
smile/json (API)
NEWS
# Install 'smile' in R: |
install.packages('smile', repos = c('https://lcgodoy.r-universe.dev', 'https://cloud.r-project.org')) |
Bug tracker:https://github.com/lcgodoy/smile/issues
Last updated 7 days agofrom:8fc43aed4e. Checks:OK: 9. Indexed: yes.
Target | Result | Date |
---|---|---|
Doc / Vignettes | OK | Nov 15 2024 |
R-4.5-win-x86_64 | OK | Nov 15 2024 |
R-4.5-linux-x86_64 | OK | Nov 15 2024 |
R-4.4-win-x86_64 | OK | Nov 15 2024 |
R-4.4-mac-x86_64 | OK | Nov 15 2024 |
R-4.4-mac-aarch64 | OK | Nov 15 2024 |
R-4.3-win-x86_64 | OK | Nov 15 2024 |
R-4.3-mac-x86_64 | OK | Nov 15 2024 |
R-4.3-mac-aarch64 | OK | Nov 15 2024 |
Exports:aiai_varfind_phifit_spmfit_spm2predict_spmsf_to_spmsummary_spm_fit
Dependencies:classclassIntDBIe1071KernSmoothlatticemagrittrMASSMatrixmvtnormnumDerivproxyRcppRcppArmadillos2sfunitswk
Converting sf objects to spm
Rendered fromsf-to-spm.Rmd
usingknitr::rmarkdown
on Nov 15 2024.Last update: 2024-11-15
Started: 2020-12-19
Fitting models and making predictions
Rendered fromfit-and-pred.Rmd
usingknitr::rmarkdown
on Nov 15 2024.Last update: 2024-11-15
Started: 2020-12-19
Areal Interpolation
Rendered fromsai.Rmd
usingknitr::rmarkdown
on Nov 15 2024.Last update: 2024-11-15
Started: 2021-12-15
Method
Rendered fromtheory.Rmd
usingknitr::rmarkdown
on Nov 15 2024.Last update: 2024-11-15
Started: 2020-12-19
Spatial covariance functions
Rendered fromsp-cov-functions.Rmd
usingknitr::rmarkdown
on Nov 15 2024.Last update: 2024-11-15
Started: 2020-12-18
Readme and manuals
Help Manual
Help page | Topics |
---|---|
Areal Interpolation | AI ai ai_var |
Find phi parameter for the Exponential spatial auto-correlation function | find_phi |
Fitting an underlying continuous process to areal data | fit_spm fit_spm.spm fit_spm2 |
Akaike's (and Bayesian) An Information Criterion for 'spm_fit' objects. | AIC.spm_fit BIC.spm_fit goodness_of_fit |
Liverpool Lower Super Output Area. | liv_lsoa |
Liverpool Middle Super Output Area. | liv_msoa |
Nova Lima census tracts | nl_ct |
Prediction over the same or a different set of regions (or points). | predict_spm predict_spm.sf predict_spm.spm_fit |
single 'sf' to 'spm' | sf_to_spm single_sf_to_spm |
smile: Spatial MIsaLignment Estimation | smile |
Summarizing 'spm_fit' | summary_spm_fit |
Voronoi Data Linkage | vdl |
Voronoi Data Linkage - Single variable and variance | vdl_var |